/math/ - Что такое угол?
Главная Юзердоски Каталог Трекер NSFW Настройки

Математика

Ответить в тред Ответить в тред
Check this out!
<<
Назад | Вниз | Каталог | Обновить | Автообновление | 177 39 67
Что такое угол? Аноним 10/12/21 Птн 17:49:40 90747 1
Tworaysandoneve[...].png 30Кб, 1049x792
1049x792
А есть логически удовлетворительное для меня определение угла?
Не через лучи с одним началом и не через внутреннее или скалярное произведение евклидовых векторов.
То есть без дефиниций типа угол это нечто без определения всем известное или сдай и забудь как все или «фигура» или «объект» или бесконечный кусок плоскости между двумя лучами или векторами, начинающимися в одной и той же точке‡

версии дефиниций из интернетов, книг и школ

Пока самое понятное, что я нашёл, вот
угол между двумя плоскостями или линиями это есть количество вращения†, нужного для совмещения(совпадения) одной плоскости или линии с другой плоскостью или линией“.
Но тут сразу возникает вопрос об определении вращения и его измерении.

может, стоит добавить „минимальное“, будет „минимальное количество вращения“?
Аноним 10/12/21 Птн 19:00:04 90750 2
Ну например отношение сектора круга с центром в начале лучей и ограниченного этими лучами к площади полного круга (умноженное на некоторую константу, например 2pi, если в радианах, или 360 если в градусах). Должно вроде работать ваще в любых пространствах где определена мера. Так на вскидку. Ну и через скалярное произведение или комплексные числа тебе не нравится то почему?
Аноним 10/12/21 Птн 19:04:49 90751 3
>>90750
Можно еще направление определить назвав один луч первым, второй вторым. Тогда еще и отрицательные углы будут. Но тут на вскидку никак без векторного произведения, а что тогда делать с бесконечномерными пространствами - хз. Скорее всего можно найти какой-то лайфак.
Аноним 10/12/21 Птн 19:10:35 90752 4
>>90750

Это будет величина угла, а не угол.
Аноним 10/12/21 Птн 19:14:59 90753 5
TRANSFORMATION-[...].jpg 314Кб, 1229x1742
1229x1742
Вращение, поворот (rotation) можно определить как ортогональную трансформацию без отражения, то есть с детерминантом матрицы компонент тензора поворота +1.
Аноним 10/12/21 Птн 20:44:16 90769 6
isometry.png 20Кб, 590x505
590x505
>>90750
> через скалярное произведение
Там получается слишком сложно. До введения системы координат и как-то направленных† взаимно перпендикулярных единичных векторов базиса скалярное произведение определяется через две длины и... угол, oops :/

в принципе всё равно как, можно и совершенно рандомно, без понятия об углах, о перпендикулярности и т.д. и т.п.

С разложением векторов на линейные комбинации базисных и определением a•b = a_i b_i уже всё okay.

> комплексные числа
А они тут как и зачем?
Аноним 10/12/21 Птн 21:22:02 90776 7
>>90769

Причем тут координатная система и базис? Скалярное произведение это просто функция от двух векторов, которая удовлетворяет некоторому набору свойств и идейно характеризует их отклонение от ортогональности с учетом длины. А угол это преобразование этой функции к привычным геометрическим размерностям.
Аноним 11/12/21 Суб 11:18:40 90790 8
comb.png 311Кб, 755x915
755x915
>>90776
У меня скалярное произведение это несамостоятельная комбинация двух операций: тензорного произведения с получением диады и последующей свёртки этой диады.
Аноним 11/12/21 Суб 13:45:26 90797 9
>>90790

Это не определение, а говорится, что обычное скалярное призведение тоже можно в такой форме представить.
Аноним 11/12/21 Суб 15:01:56 90804 10
wikipedia.png 100Кб, 755x545
755x545
>>90797
a • b = (Σ‎) a_i b_i есть определение скалярного произведения, в википедии оно названо алгебраическим определением.
Все свойства операции “•” следуют из этого представления.
Аноним 11/12/21 Суб 15:45:36 90808 11
>>90804
>(Σ‎) a_i b_i есть определение скалярного произведения
Простите, что вмешиваюсь, но чувствую желание подчеркнуть, что данная формула доставляет только пример скалярного произведения и вовсе не является определением.
Определять его можно и иначе, в википедии как раз написано
Аноним 11/12/21 Суб 17:12:16 90809 12
>>90804
>есть определение скалярного произведения
Есть определение скалярного произведения для двух векторов, ты уж до конца дочитывай что у тебя на скрине. Открой уже любой учебник функана и почитай что действительно такое скалярное произведение.
Аноним 11/12/21 Суб 17:25:22 90810 13
>>90808
Если тебе чем-то не нравится определение •-продукта как
a • b = (Σ‎) a_i b_i,
то напиши чем конкретно.

Я же не приемлю циркулярной дефиниции •-продукта через •-продукты как эта
a • b = √(a • a) √(b • b) Ω,
или она же самая
a • b = ||a|| ||b|| cos (a^b)
Аноним 11/12/21 Суб 18:05:03 90812 14
inn.png 364Кб, 755x1108
755x1108
images.png 6Кб, 245x205
245x205
>>90809
Давай операцию для бесконечномерных функционалов над полями комплексных чисел называть таки inner product (внутренним произведением), а dot/scalar product (скалярное произведение) это для эвклидового 3D/2D пространства.
Аноним 11/12/21 Суб 19:01:39 90815 15
>>90810

Я другой анон, но мне лично не нравится, что понятие не зависящее от базиса определяется через базис. Никакой "цируклярной дефиниции" не происходит, скалярное произведение первичное понятие, которое задает и норму, и угол. Да, исторически это не так, но какая разница, исторически все хуево определяется.
Аноним 11/12/21 Суб 19:04:43 90816 16
>>90812

Вот как раз "кип ит симпл" это значит не использовать координаты для безкоординатных понятий. Я понимаю, что вы физики даже тензорное произведение без координат не можете определить, но доска тут не физическая.
Аноним 11/12/21 Суб 21:05:29 90828 17
>>90812
(вообще термин dot product используют для любых размерностей)

на русском языке это разграничение не принято
да и в англ. не всегда учитывается

и вообще не нужно оно
Аноним 12/12/21 Вск 00:43:44 90837 18
>>90816
Ну физик, который вместо собственно скалярного произведения лезет в какое-то говно вроде оп-поста, как минимум странный физик.
Аноним 12/12/21 Вск 01:22:39 90838 19
>>90747 (OP)
>А есть логически удовлетворительное для меня определение угла?
>>90812
>Давай операцию для бесконечномерных функционалов над полями комплексных чисел
В матеше всегда так?
Аноним 12/12/21 Вск 01:26:54 90839 20
>>90837
Это довольно известный, а в /un/ дак вообще легендарный фрик из бауманки.
Аноним 12/12/21 Вск 02:44:11 90840 21
>>90839
Ну баумка к подготовке физиков имеет одно из последний значений, там же обычно инженегров клепают. Впрочем если это какой-то известный фрик то хуй бы то с ним, так как в /un не был где-то с 2011.
Аноним 12/12/21 Вск 03:09:44 90841 22
>>90838
справедливости ради, никаких "бесконечномерных функционалов" в математике нет. бесконечномерными бывают пространства

>А есть логически удовлетворительное для меня определение угла?
а это вопрос лично к спрашивающему, что, собственно, его удовлетворяет. его личное дело
Аноним 12/12/21 Вск 15:22:16 90846 23
Аноним 12/12/21 Вск 15:54:22 90847 24
>>90846
Какие же физики тупые.
Аноним 12/12/21 Вск 16:40:53 90851 25
51IBo74RofL.jpg 36Кб, 352x500
352x500
>>90847
По-умному определять нужно вот так?

Having two geometrical Euclidean vectors decomposed as a = (Σi) a_i e_i, b = (Σi) b_j e_j,
the dot product of these two geometrical Euclidean vectors is
ab :def≡ (Σi,j) a_i b_j e_i • e_j
or
ab :def≡ (Σi) a_i b_i if and only if e_i • e_j = δ_{ij}
Аноним 12/12/21 Вск 16:46:30 90852 26
b = (Σj) b_j e_j
quick correction
Аноним 12/12/21 Вск 17:49:20 90859 27
Circulardefinit[...].png 18Кб, 889x763
889x763
Аноним 12/12/21 Вск 20:51:30 90870 28
>>90847
Физики умнее математиков
Если не брать в расчёт гротендика, почти все самое крутое в математике пришло из физики
Аноним 13/12/21 Пнд 08:48:15 90890 29
>>90747 (OP)
Угол это мера колинеарности двух геометрическиз обьектов. Значит ты должен определить для себя о какой геометрии идет речь, что есть понятие колинеарности в рамках этой геометрии и что за обьекты.
Аноним 14/12/21 Втр 00:33:22 90911 30
dot.product.png 265Кб, 755x974
755x974
Тут вот что ещё с углами-то.
В одних случаях углы считаются как ненаправленные (через косинус тоже), а знак угла показывает зачем-то его "острость" или "тупость".
В других же случаях знак угла показывает направление самого угла (через синус тоже) — против вращения стрелки часов или в ту же сторону.
Аноним 14/12/21 Втр 00:58:48 90912 31
OkayGuy.jpg 72Кб, 1705x959
1705x959
>>90911
> dot product
> dot
> ×
> $\times$
Аноним 14/12/21 Втр 12:43:55 90916 32
>>90911
>зачем-то его "острость" или "тупость"
>зачем-то
Если проецировать вектор $\boldsymbol{w}$ на вектор $\boldsymbol{v}$, то знак «минус» у проекции $\operatorname{proj}_{\boldsymbol{v}} \boldsymbol{w} < 0$ покажет то, что проекция направлена противоположно $\boldsymbol{v}$
Аноним 14/12/21 Втр 16:06:09 90924 33
Аноним 14/12/21 Втр 19:53:52 90943 34
rotation.png 156Кб, 755x446
755x446
>>90924
Интересный подход. С тензорами поворота совместим?
Аноним 15/12/21 Срд 12:10:12 90964 35
>>90752
>Это будет величина угла, а не угол.
А разве ОП не это и спрашивал?
>величина, а не угол.
Ну ок, тогда угол - просто часть плоскости ограниченная лучами с началом в одной точке в окрестности этой точки. Так тебе норм, лол?
Аноним 15/12/21 Срд 14:11:15 90969 36
>>90964
А в векторных пространствах бывают лучи?
Что-то ни разу не видел.
Прямые типа $n_{1} x_{1} + n_{2} x_{2} + n_{3} x_{3} + n_{0} = 0$ видел много раз.
Аноним 15/12/21 Срд 21:04:03 91003 37
>>90964

Короче, получается угол это два вектора, а мера/величина это соответствующая функция от них.
Аноним 15/12/21 Срд 23:48:33 91012 38
>>91003
Попробуй угол пополам поделить. Аналитически.
Если получится, то после поделить на три равные части.
Аноним 16/12/21 Чтв 20:49:55 91031 39
>>91012

Да пошел ты нахуй, ответил он уколончиво. А как тогда верно определеить угол в произвольном векторном пространстве со скалярным произведением?
Аноним 17/12/21 Птн 01:50:58 91032 40
>>91031
>в произвольном векторном пространстве
А там нужны вообще углы?
Аноним 17/12/21 Птн 13:07:47 91034 41
>>90747 (OP)
Чем тебя не устраивает определение радианной меры углы как определения угла?
Скажем угол это часть дуги окружности меж двух лучей, с поправкой на подобие.
Аноним 17/12/21 Птн 21:44:49 91049 42
diff.png 419Кб, 750x1097
750x1097
>>91034
1. Концепт лучей не нужен. Либо ему нужно годное аналитическое определение, операции, связь с популярными пространствами и всё такое.
2. У окружности и дуг окружности радиус есть, от которого угол не зависит.
Аноним 18/12/21 Суб 20:51:54 91057 43
bivectors2.webm 7810Кб, 1280x720, 00:04:49
1280x720
Аноним 19/12/21 Вск 01:14:43 91064 44
>>91057
>ещё никто не упоминал?
Это не проходятзадрачивают в вузиках, поэтому никто про это не знает
Аноним 19/12/21 Вск 01:27:51 91070 45
>>91064
В каком нормальном вузе не проходят внешнюю алгебру?
Аноним 19/12/21 Вск 15:48:22 91086 46
>>91070
Лучше тащи пример, где её проходят, как называется курс и по нему лекции скачать бесплатно без смс
Аноним 19/12/21 Вск 16:07:58 91088 47
>>91057
>lets remove quaternions from every 3d engine
Кватернионы гораздо быстрее вычисляются. Потому никуда они не денутся. Geometric algebra полезна, чтобы вывести таблицу умножения кватернионов.
Аноним 19/12/21 Вск 17:48:24 91092 48
Thomas-Stanford[...].jpg 293Кб, 1024x1275
1024x1275
Какие же всё-таки раньше были красивые книги по математике.

Это вот Στοιχεῖα (Elementa, The Elements, Элементы или, иногда, Начала) Εὐκλείδης (by Euclid, Евклида)
Аноним 19/12/21 Вск 20:18:58 91098 49
>>91086
Курсы по алгебре:
Городенцев, Алгебра 2.
Вавилов, Алгебра.
Мануйлов, Линейная алгебра и геометрия (некрасиво, но есть).

Курсы по дифференциальной геометрии:
Вьюгин, Гладкие многообразия.
Фоменко, Дифференциальная геометрия и топология.
Пенской, Дифференциальная геометрия и топология.

Это если брать только курсы с записями лекций в открытом доступе.
Аноним 20/12/21 Пнд 00:57:01 91108 50
>>91092
Готов платить за книгу 380 тысяч рублей?
Аноним 21/12/21 Втр 20:03:45 91269 51
>>91032

Ну, если скалярное произведение мы знаем, то можем найти величину угла между векторами. Есть разумный вопрос, если мы знаем два вектора между которыми угол 40 градусов, то можем ли мы построить единственный вектор между ними, угол до которого будет, например, 10 градусов от одного из них и 30 до другого? Чтобы был плоский угол, нужно брать вектор в их линейной оболочке. А дальше? По нерерывности искать его?
Аноним 21/12/21 Втр 23:12:39 91279 52
>>91269
>можем ли мы построить единственный вектор между ними, угол до которого будет, например, 10 градусов от одного из них и 30 до другого
Такой вектор не единственный, их два
Аноним 22/12/21 Срд 18:49:49 91311 53
>>91279

Таких векторов вообще сколько угодно может быть, я имел в виду, что мы его определим так, что будет однозначно. Вопрос как это сделать наиболее естественным образом. Может быть есть уже известное решение?
Аноним 22/12/21 Срд 22:15:03 91334 54
>>90747 (OP)
ну смотри, угол есть смысл только определять через скалярное произведение. Однако скалярное произведение можно взять любое ведь. Например взяли мы ортонормированный базис со скалярным произведением (1,1,1). Потом подвигали его стороны немного в рандомные стороны и снова ввели скалярное определение (1,1,1), согласно которому этот кривой базис должен быть ортогональным. Но мы просто смотрим на него и видим что он кривой. Хз где тут загвоздка, это шизоид какой-то придумал как и всю математику, ахахахах
Аноним 23/12/21 Чтв 01:57:01 91353 55
>>91334
>Но мы просто смотрим на него и видим что он кривой. Хз где тут загвоздка, это шизоид какой-то придумал как и всю математику, ахахахах
математика не зависит от того, что мы "видим"
это не баг, это фича
Аноним 23/12/21 Чтв 02:56:10 91354 56
>>91353
если математика не может отличить угол в 90 градусов от угла в 57 градусов то нахуй она нужна.
Аноним 23/12/21 Чтв 11:53:00 91359 57
>>91334
>угол есть смысл только определять через скалярное произведение
Тогда нужно что-то ещё, чтобы до скалярного умножения определять длину, типа евклидовой нормы. Получится, что
\begin{equation}
\operatorname{cos} \measuredangle (\boldsymbol{a}, \boldsymbol{b})
\equiv
\displaystyle\frac{\boldsymbol{a}}{\| \boldsymbol{a} \|} \cdot \displaystyle\frac{\boldsymbol{b}}{\| \boldsymbol{b} \|}
\end{equation}
Аноним 23/12/21 Чтв 14:32:22 91367 58
>>91354
это ты не можешь отличить "90 градусов" от "ортогональность"

>>91359
>чтобы до скалярного умножения определять длину, типа евклидовой нормы
норма естественным образом индуцируется из скалярного произведения
Аноним 23/12/21 Чтв 15:49:00 91370 59
image.png 3Кб, 242x65
242x65
>>91367
>это ты не можешь отличить "90 градусов" от "ортогональность"
почему, могу, 90 градусов я могу на глаз отличить, а ортогональность это бесполезное в математике понятие так как я для любого неортогонального базиса могу переопределить скалярное произведение так чтобы он был ортогональным. Математика даже не может выделить скалярное произведение на пикрил среди других скалярных произведений чтобы такой проблемы переопределения не было
Аноним 23/12/21 Чтв 17:04:44 91372 60
>>91370

>Математика даже не может выделить скалярное произведение на пикрил среди других скалярных произведений
О чём ты вообще?

>я для любого неортогонального базиса могу переопределить скалярное произведение так чтобы он был ортогональным
Так переопредели и покажи как.
Аноним 23/12/21 Чтв 18:28:20 91373 61
>>91372
>О чём ты вообще?
бля так и думал что тупого включишь
>Так переопредели и покажи как.
берёшь и задаёшь скалярное произведение (1,1,1)
Аноним 23/12/21 Чтв 19:05:30 91374 62
>>91373

Что такое скалярное произведение (1,1,1)?
Аноним 23/12/21 Чтв 19:23:26 91375 63
>>91374
Удваиваю вопрос.
Аноним 23/12/21 Чтв 20:35:41 91376 64
>>91374
единичная матрица. Скалярное произведение задаётся матрицей.
Аноним 23/12/21 Чтв 21:21:01 91378 65
>>91376
Ёпта, ты про метрические тензоры что ли? Так ведь они не "задаются" кем-то произвольно по желанию.
Аноним 24/12/21 Птн 01:58:06 91388 66
>>91370
>почему, могу, 90 градусов я могу на глаз отличить,
ты можешь на глаз отличить 90 градусов от 57, но причём здесь ортогональность?

>а ортогональность это бесполезное в математике понятие
раз уж ты ощущаешь себя вправе рассуждать о том, что в математике полезно, а что нет, тебе бы следовало хотя бы осознать, что в математике градусов вообще никаких нет, это название для единицы измерения, концепции совершенно чуждой математике есть сигма-алгебры, но и они определяются абстрактно

напротив, понятие "ортогональности" как некоторое соотношение, определённое для предварительно заданной структуры (скалярном произведении) - понятие совершенно естественное и имманентное математике

тот факт, что на одном и том же пространстве можно по-разному вводить скалярное произведение, и каждый раз будут получаться свои понятия ортогональности, никого не смущает, более того, этот факт не просто не бесполезен, он ЧРЕЗВЫЧАЙНО полезен. отсюда растёт риманова геометрия, невероятно глубокая, сложная и красивая наука

далее, возвращаясь к
>Математика даже не может выделить скалярное произведение
я отмечу, что на $\mathbb R^n$, которое мы понимаем как множество столбцов чисел длины $n$, экзотические скалярные произведения никогда не рассматриваются. я, во всяком случае, ни разу не видел. "необычные" скалярные произведения возникают на пространствах, заданных иначе.

например, на пространстве многочленов (степени меньше $n$),
твой любимый пикрил, как и твои любимые "90 градусов", совершенно бессмысленны: скажем, что такое угол между $x^2+x$ и $x-1$? вот здесь и приходят на помощь абстрактные конструкции: мы вводим скалярное произведение на пространстве многочленов и относительно него можем вычислить такой угол.

чтобы вычислять длину угла, тебе всё равно надо каким-то образом объяснить строго определить а не отличать на глаз, что такое "угол" и что такое его длина, оказывается, через скалярное произведение очень удобно и естественно это делать

ты, конечно, шиз, и ничего не поймёшь из того, что я написал,
но истина дороже
Аноним 24/12/21 Птн 05:21:37 91391 67
>>91388
так, ещё раз для особенных, может ли математика мне сказать равен ли угол в моей комнате 90ста градусам? Или она для этого потребует координаты векторов лежащих на этом угле в базисе из векторов между которыми 90 градусов?? Нахуя мне математика которая работает рекурсивно и чтобы определить 90 градусов требует угол в 90 градусов? Я же вижу на деле в реальной жизни что этот угол в 90 градусов особенный, в отличии от угла 57 градусов обладает всякими особенностями, а значит он не равносилен углу в 57 градусов и может быть как-то порождён из математики.
Аноним 24/12/21 Птн 05:49:29 91393 68
>>91391
>так, ещё раз для особенных, может ли математика мне сказать равен ли угол в моей комнате 90ста градусам?
для этого у тебя есть транспортир
математика решает другие задачи

>Нахуя мне математика
этот вопрос следует задать зеркалу
а посторонних людей не трогать

>чтобы определить 90 градусов требует угол в 90 градусов
чтобы в абстрактном векторном пространстве определить угол, вводят скалярное произведение. ты можешь определить угол иначе как-нибудь, твоё личное дело, никто за руку не держит. никаких градусов в математике в принципе нет, я уже пояснил

>а значит он не равносилен углу в 57 градусов и может быть как-то порождён из математики.
что значит "равносилен"? это какие-то продукты твоей собственной фантазии
Аноним 24/12/21 Птн 06:10:44 91395 69
>>91393
>для этого у тебя есть транспортир математика решает другие задачи
то есть не может
>никаких градусов в математике в принципе нет, я уже пояснил
ну не градусов так радиан, какая нахуй разница, четверть окружности в общем.
>что значит "равносилен"? это какие-то продукты твоей собственной фантазии
это значит что угол 90 градусов обладает особыми свойствами по сравнению с углом 57 градусов. Например делит окружность ровно на четыре части, а также задаёт самый удобный базис в нашем пространстве, три оси под углами 90 градусов друг к другу. Математика не может объяснить почему он самый удобный, у неё скалярное произведение привязано к ортонормированному базису, а ортонормированный базис к скалярному произведению
Аноним 24/12/21 Птн 06:54:21 91399 70
>>91395
>то есть не может
если ты настаиваешь, то да, не может
причина в том, что математика не знает, что такое угол в твоей комнате
биология тоже не может измерить угол в твоей комнате по той же самой причине, но это у тебя анальных болей не вызывает

>ну не градусов так радиан, какая нахуй разница, четверть окружности в общем.
для этого надо научиться измерять длину окружности, кроме того, и саму окружность, если нет понятия длины вектора, нарисовать невозможно.
иначе говоря, надо по-прежнему ввести множество дополнительных структур, которых в абстрактном векторном пространстве нет, и выбор которых, я подчеркну, произвольный
в конце этого пути можно определить углы, я формальных препятствий не вижу. но эти углы будут зависеть от выборов дополнительных структур (от того, каким образом будут определены "длина вектора" и "длина окружности")

>это значит что угол 90 градусов обладает особыми свойствами
так ты начинаешь пытаться определить, что такое угол
когда доведёшь до строгого определения, можно будет обсудить

>Математика не может объяснить почему он самый удобный
и не должна
ты сам выбираешь, что для тебя удобно

>у неё скалярное произведение привязано к ортонормированному базису
оно не привязано, скалярное произведение вводится отдельно

>а ортонормированный базис к скалярному произведению
это правильно
Аноним 24/12/21 Птн 19:36:19 91432 71
rot.png 146Кб, 674x905
674x905
Rotation is a distance preserving bijection of the space with a fixed point.
Angle is a measure of rotation.
Аноним 29/12/21 Срд 14:24:22 91684 72
1.png 67Кб, 721x509
721x509
2.png 69Кб, 1057x535
1057x535
⇈⇈
$\uparrow \uparrow \uparrow \uparrow \uparrow$
Аноним 13/01/22 Чтв 05:32:57 92322 73
О чем весь тред? У тебя векторное пространство над каким полем? Если вещественное, то вводишь на нем симметричную билинейную форму с положительно определенной соответствующей квадратичной формой, называешь это скалярным произведением и определяешь через него косинус угла, доказывая, что он всегда от -1 до 1, вуаля. Если комплексное, то все то же самое, только форма эрмитова. Кострикин, второй том.
Аноним 13/01/22 Чтв 11:04:13 92326 74
>>92322
>>92322
>пролистал один учебник, нацеплял оттуда дохуя лишних бесполезных слов и посчитал что сможет выебнуться
...и гарантировано не ответит на вопросы:

Почему косинус, а не синус?
Почему круговые функции, а не эллиптические?
Почему круговые, а не гиперболические?

Отличать углы "по часовой" от углов "против часовой" не нужно?

>>92322
>пролистал один учебник, нацеплял оттуда дохуя лишних бесполезных слов и посчитал что сможет выебнуться
И гарантировано не ответит на вопросы:

Почему косинус, а не синус? >>92322
>пролистал один учебник, нацеплял оттуда дохуя лишних бесполезных слов и посчитал что сможет выебнуться
И гарантировано не ответит на вопросы типа таких:

Почему косинус, а не синус? Отличать углы "по часовой" от углов "против часовой" не нужно?
Почему циркульные функции, а не эллиптические?
Почему циркульные, а не гиперболические?

Что такое нулевой угол?
Как сложить или вычесть два угла?
Можно ли перемножить два угла?
Как умножить угол на скаляр?
Аноним 13/01/22 Чтв 13:02:23 92328 75
>>92326
Потому что это канонично, блядь в математическом смысле: Взяли интуитивную хуйню, раскрутили на пальцах на R^2, а потом на этой мотивировке построили общее определение, которое в частном случае вырождается в то, с чего начали. И в этом, внезапно, нет никакого логического противоречия. Ты пойди еще до физиков доебись за принцип наименьшего действия.
Аноним 13/01/22 Чтв 15:22:19 92329 76
>>92326
>Почему косинус, а не синус?
почему ты говоришь на русском, а не на хинди?
примерно такого же уровня вопрос
Аноним 13/01/22 Чтв 15:30:47 92330 77
>>92329
Некорректная аналогия.
मैं कई भाषाएं बोलता हूं, खासकर जब मेरे पास इंटरनेट है
Аноним 13/01/22 Чтв 20:26:51 92341 78
>>92330
корректная
потому что придираться за названия (c тысячелетней историей) - это бред и тупость
Аноним 13/01/22 Чтв 23:32:15 92357 79
>>92341
Какие ещё названия? Синус и косинус? По-твоему они отличаются лишь названиями? И причём тут какая-то сраная древняя история?
Аноним 14/01/22 Птн 00:22:53 92358 80
>>92357
я не понял, чем тебе не нравятся косинус и синус
Аноним 14/01/22 Птн 07:45:56 92363 81
>>92358
Понимаешь ли, sinus complementi (cosine) превосходен для получения ортогональных проекций. Скалярное произведение вводится и используется тоже для того же.
Когда же тебе нужны не проекции, ты осознаешь: косинус тут не совсем то, что тебе нужно.
Аноним 14/01/22 Птн 11:49:24 92366 82
>>92363
синус - это конкретная функция, для неё указаны область определения, область значений и формула, по которой она вычисляется. это как число $1$ или $\sqrt{2}$

скалярное произведение - это дополнительная структура, которая в разных задачах может быть выбрана по-разному
Аноним 14/01/22 Птн 13:12:58 92368 83
ellipticfunctio[...].webm 30877Кб, 1280x720, 00:05:11
1280x720
JacobiEllipticF[...].png 131Кб, 1024x1073
1024x1073
>>92366
Похвально, что ты это знаешь, можешь взять конфетку.
Наверняка тебе понравятся эллиптические функции ещё.

А этот тред – про поиск дефиниции угла.
Что такое угол?
Аноним 14/01/22 Птн 13:36:48 92369 84
>>92368
>Что такое угол?
множество раз выше уже пояснили
Аноним 22/01/22 Суб 18:20:01 92831 85
Аноним 22/01/22 Суб 18:25:52 92832 86
>>92369
И что, разве выбрали какой из сотни вариантов определения угла юзать окончательно?
Аноним 22/01/22 Суб 18:57:15 92837 87
>>92832
Я не оп-шиз, за копротивлениями не следил
Аноним 23/01/22 Вск 20:22:04 92920 88
Orthogonaldecom[...].png 58Кб, 525x514
525x514
Аноним 24/01/22 Пнд 23:38:01 92964 89
Аноним 25/01/22 Втр 20:07:39 92974 90
euklid-iv-criti[...].webm 4965Кб, 856x480, 00:01:22
856x480
Аноним 31/03/22 Чтв 10:17:26 94770 91
signfree.png 19Кб, 188x238
188x238
BUMP
Аноним 18/04/22 Пнд 02:20:17 95288 92
Если серьезно и по теме, то можно попытаться определить так.

Введите искусственным путем арккосинус, например, в виде интеграла.

Возьмите вещественное двумерное векторное пространство $ R^2 $, снабдите его стандартным скалярным произведением: $<(x_1,y_1);(x_2,y_2)>:=x_1y_1+x_2y_2$. Отсюда несложно определить длину вектора $l((x,y)):=\sqrt{x^2+y^2}$

Определите угол между векторами $a$ и $b$ как число $\operatorname{Angle}(a,b):=\operatorname{arccos}(\frac{<a;b>}{l(a)l(b)})$.

Более того, на аффином пространстве $RA^2$ наше скалярное произведение порождает метрику. У получившегося метрического пространства Вам теперь нужно расклассифицировать изометрии, выбрать те из них, которые в качестве множества неподвижных точек имеют $\{(0,0)\}$ (назовем их интересными поворотами), и всякой такой изометрии биективно сопоставить угол между векторами так. Пусть $e_1=(0,1)$, $i(e_1)$ суть кортеж-образ $e_1$ под действием изометрии $i$. Этим кортежам соответствуют очевидным образом вектора, и интересному повороту $i$ сопоставляем $\operatorname{Angle}(e_1,i(e_1))$.

Теперь рассмотрим множество $A:=[0,\infty)$ и интересный поворот$i_x$, соответствующий нужному значению $x$ угла между векторами. И теперь геометрическим углом в $x$ радиан назовем множество, которое некоторой изометрией того самого аффинного пространства вкладывается в $A\cup i_x(A)$.
Аноним 04/06/22 Суб 14:17:24 96196 93
20220323162747.jpg 52Кб, 578x464
578x464
вверх, тред охуенен
Аноним 04/06/22 Суб 14:46:12 96197 94
1824001.jpg 17Кб, 450x353
450x353
Дохлый раздел, казалось бы, откуда тут столько шизла?.. По аналогии с N-петухом, который не осилил определения N, предлагаю назвать опа угловым петухом. В чем вообще смысл искать определения того, что давно определено разными способами, более того, имеющиеся определения общеприняты и не вызывают никаких проблем с использованием? Пейте таблетки, граждане, меньше будет вопросов.
Аноним 15/06/22 Срд 15:29:09 96384 95
>>90747 (OP)
я помню такими же вопросами задавался, типа что такое площадь?
Мы же когда площадь считаем, то умножаем длину на ширину, и я задавался вопросами, как мы то что не имеет ширины умножаем, на то что не имеет длинны. Патом понял, что нужно принять за аксиому, единицу площади, что она существует, а перемножением длинны на ширину, мы получаем сколько раз единица площади умещается в этом пространстве длинной такой то и шириной такой то
Аноним 15/06/22 Срд 17:46:44 96395 96
16538878850020.png 71Кб, 990x662
990x662
>>96384
> Мы же когда площадь считаем, то умножаем длину на ширину, и я задавался вопросами, как мы то что не имеет ширины умножаем, на то что не имеет длинны.
Это недостаточность абстрактного мышления. Если затык даже на таком простейшем примере, ты уже на тригонометрии соснешь. С другой стороны, можешь вкатиться в счёт древних шизов Рыбникова, просто прими, что все эти абстракции это приказ Израиля.
Аноним 15/06/22 Срд 17:51:56 96397 97
>>96395
Логично в принципе. Если еврейская команда ZOG управляет миром, то кто мы такие чтобы копротивляться? Гораздо разумнее принять их волю.
Аноним 15/06/22 Срд 20:30:17 96400 98
>>96395
Ну може ты и прав, я очень всегда хочу узнать полностью картину, каждую деталь и связь, и очень тяжело и обидно когда ради решения какой то задачи или понимания чего то, приходится абстрагироваться. И действительно тригонометрию плохо понял. Ну во первых потому что формулы я не хотел учить в школе, а во вторых сидел и искал смыслы в единичной окружности, и так как я люблю находить всякие физические аналогии математическим явлениям, то сидел и представлял что синус гипотенузы, это проекция и тень на ось y этой гипотенузы. Ну меня тупым никогда не считали, хоть и троешником был всю жизнь, но скажу не стесняясь, я наверное лучше всех из класса решал задачи по геометрии. Я иногда думаю, вот бы существовали психологи по математике и физике, что бы помочь мне мои проблемы по этим наукам решить.
Аноним 16/06/22 Чтв 07:40:44 96404 99
>>96400
>психолог по физике

Хм. А в этом что-то есть.
Аноним 16/06/22 Чтв 14:25:17 96410 100
>>96400
оценки ни о чём не говорят
сиди тут и задавай в треде для новичков свои вопросы, кто мешает-то
математика - это не спринт, коль скоро ты её (чистую или прикладную) в профессиональном плане не используешь, сиди хоть 20 лет оджну тему читай, не похуй ли
Аноним 16/06/22 Чтв 17:00:59 96411 101
>>96384
Я думал в школе, что площадь можно выразить через длину, а длину через количество.
Например прямоугольнике со сторонами 3х5 при подсчете площади 3х5 мы берем сторону 3 и копируем её к каждой точке стороны 5. Можно представить что получаем ломанную. Она имеет длину каким-то хитрым образом вычислимую, и её длина равна площади.
Наверное если бы мне нечем было больше заняться, то открыл бы что-то вроде метода неделимых. Но у меня был варкрафт.
Аноним 16/06/22 Чтв 17:15:42 96412 102
>>96411
Ну для меня было понятно что что бы найти количество ячеек в таблицы нужно количество столбцов умножить на количество строк. То есть таблица 3x5 = 15 ячеек. Так как там есть наименьшая мера измерения это ячейка, то понятно становится, что мы складываем 5 раза столбец размером 3 ячеек, или же 3 раза складываем строки размером 5 ячеек. А вот в геометрической фигуре нет единицы измерения визуальной, там можно бесконечно делить и делить ее.
И типо сколько мне раз нужно сложить ширину, если наименьшей единицы измерения нет у длинны
Аноним 18/06/22 Суб 11:36:25 96437 103
>>96395
>Это недостаточность абстрактного мышления
Ну а вот эта твоя хуйня с математикой на основе цветных квадратиков? Это ничто иное как переход от более абстрактных, символических семиотик к менее абстрактным, наглядно-образным иконическим семиотикам. Можно ещё счётные палочки использовать, лол. Так что слушать тебя про абстрактное мышление - это всё равно что учиться целомудрию у проституток.
Аноним 19/06/22 Вск 17:37:38 96468 104
>>96437
Каких ещё квадратиков?!
Аноним 22/06/22 Срд 15:57:36 96540 105
>>96384
Пиздец, ты и оп просто два инвалида.
Это даже комментировать сложно, настолько тупорылые логические ошибки, что едва ли похоже на что-то кроме троллинга.
Опу:
Нет, угол -- это объект, который существует только в евклидовом пространстве, поэтому и описывается он в самом широком случае через свойство евклидова пространства: наличие скалярного произведения.
Ладно, есть ещё обобщения на случаи метрических пространств, но они разнятся по свойствам от определения к определению, поэтому под то, что ты представляешь под углом, не подходят.
Все остальные способы представления углов -- это для наглядности.
Аноним 22/06/22 Срд 16:04:40 96541 106
>>96540
Добавлю: "количество вращения" определяться у тебя будет через линейные отображения, а то есть умножение матрицы на вектор, и в итоге всё равно сведётся к скалярному произведению.
Аноним 22/06/22 Срд 17:18:32 96542 107
>>96540
Ты даун, я чувствую это через монитор
Аноним 22/06/22 Срд 18:38:53 96543 108
>>96468
>Каких ещё квадратиков
Приходит министр сельского хозяйства к М. С. Горбачеву.
- Михаил Сергеевич, беда, в стране куры дохнут.
- Ничего страшного, нарисуйте перед каждой курицей желтый круг.
Пожал плечами министр, ушел. Через две недели приходит:
- Михаил Сергеевич, все равно дохнут.
- Впишите в желтый круг зеленый квадрат.
Пожал плечами, ушел. Приходит через неделю:
- Михаил Сергеевич, дохнут ведь, совсем мало осталось.
- Впишите в зеленый квадрат красный треугольник Проходит месяц,
встречает Горбачев Министра и воспрашает, а чтож вы не заходите не
рассказываете как там куры?
- Да понимаете Михаил Сергеевич, сдохли все.
- Ах как жаль, у меня еще так много идей!
Аноним 22/06/22 Срд 19:51:24 96547 109
>>96543
ахахах, а здесь есть какой то глубинный смысл или шутка просто в том что горбачев методом тыка пытается решить проблему?
Аноним 22/06/22 Срд 20:45:15 96550 110
>>96547
Да пидарас этот Горбачёв, такую страну развалил, вот и весь смысл.
Аноним 22/06/22 Срд 20:53:19 96551 111
>>96547
>есть какой то глубинный смысл
Нет
Аноним 22/06/22 Срд 22:15:23 96554 112
image.png 358Кб, 1169x813
1169x813
Аноним 23/06/22 Чтв 02:11:33 96558 113
Аноним 25/07/22 Пнд 15:56:58 97320 114
Аноним 02/08/22 Втр 13:34:58 97548 115
>>90747 (OP)
Степень рассихронизации траекторий.
Отсылает к тому что всё во вселенной определяется через движение.
Аноним 02/08/22 Втр 16:38:19 97554 116
>>97548
Движенья нет, сказал мудрец брадатый.
Другой смолчал и стал пред ним ходить.
Аноним 02/08/22 Втр 22:51:58 97561 117
Если круг превратить в линию и отметить на нём точку старта и целевую точку, то это будет разность между ними.
Аноним 12/08/22 Птн 13:51:35 97735 118
test $\frac {12+4}{\pi}$
Аноним 14/08/22 Вск 12:51:33 97771 119
>>97561
То есть угол - это сама степень отклонения одного луча от другого? А как называется область пространства, которая этими лучами отграничивается?
Аноним 15/08/22 Пнд 12:58:19 97806 120
>>97771

Не, наоборот, область пространства это и есть угол, а величина отклонения это угловая мера (иногда ее неверно называют углом).
Аноним 18/08/22 Чтв 23:53:31 97976 121
>>90859
>>90851
Блядь проиграл с этих словесных мастурбаций. Вы блядь можете просто определение углу дать или нет? Вас не просили гимнастикой заниматься.
Аноним 18/08/22 Чтв 23:56:44 97979 122
>>91432
Какой же английский все таки охуенный язык. Простой, понятный и лаконичный. Пока местные клоуны спорят УГОЛ vs ВЕЛИЧИНА УГЛА, на английском языке буквально в трех словах дано определение без всякого двоемыслия.
Аноним 21/08/22 Вск 22:59:50 98099 123
>>96400
Вот этот хуй отлично объяснил, что я начал понимать интуитивно синусы и косинусы без заучиваний. Но он на английском
https://www.youtube.com/watch?v=Pn1-DLihSh4
Аноним 05/09/22 Пнд 12:34:10 98676 124
sergey lang xii[...].png 234Кб, 800x1169
800x1169
sergey lang 107[...].png 302Кб, 800x1167
800x1167
sergey lang 110.png 430Кб, 800x1141
800x1141
sergey lang 111.png 340Кб, 800x1139
800x1139
>>90747 (OP)
Как насчёт определения в
Lang, Serge - Basic mathematics (1971, Addison-Wesly Publishing Company) ?
Аноним 05/09/22 Пнд 17:24:02 98682 125
>>98099
Хз, чет он там полчаса идет к объяснению определения, которым меня в школе насиловали, Косинус - это абсцисса, а синус - ордината, точки лежащей на единичной окружности и соотвествующей данному углу поворота.
Аноним 05/09/22 Пнд 20:08:13 98684 126
>>98099
А где-то объясняют не так? Начинать лучше с подобных треугольников, потом синусы/косинусы в прямоугольном треугольнике, а только потом переходить к единичной окружности.
Аноним 08/09/22 Чтв 12:50:09 98758 127
Screenshot20220[...].png 241Кб, 800x1208
800x1208
>>98684
>Начинать лучше с подобных треугольников
?¿ Но зачем?
Аноним 08/09/22 Чтв 19:14:01 98770 128
>>98758
Чтобы понимать, почему в прямоугольных треугольниках разных размеров, но с одинаковыми углами одинаковые отношения сторон.
Аноним 12/09/22 Пнд 01:07:15 98853 129
>>98684
Видимо да, раз после чтения нескольких статей не приходит понимание. Заучить конечно можно, а вот понять - нет. А в видео объясняется сама суть синусов и косинусов, что становится понятно всё интуитивно и с первого раза.
Аноним 02/12/22 Птн 22:28:07 100084 130
>>100059

В произвольном векторном пространстве что такое дуга?
Аноним 03/12/22 Суб 19:48:05 100105 131
>>100085

Ясное дело, что угла нет, мы его тут определить пытаемся. Вот в определении есть дуга, что это такое, я хотел узнать.
Аноним 06/12/22 Втр 16:52:18 100129 132
>>100105
Множество точек, равноудалённых от центра.
Аноним 07/12/22 Срд 00:28:17 100131 133
>>100129

1) В произвольном векторном пространстве нет ни центра, ни расстояния. Но если даже это всё задать, то получится сфера, а не дуга.
2) Каким образом это множество предлагается делить на какой-то "радиус" для получения угла?
Аноним 08/12/22 Чтв 23:28:21 100164 134
>>100131
>В произвольном векторном пространстве нет ни центра, ни расстояния.
Но есть начало отсчёта и радиус векторы. Расстоянием вполне может послужить длина вектора.
>Каким образом это множество предлагается делить на какой-то "радиус" для получения угла?
А тебе же было дано определение дуги, а не радиуса.
Аноним 09/12/22 Птн 16:05:32 100174 135
>>100164

Нет, начала отсчета и радиус-векторов тоже нет, для этого нужно аффинное пространство. Ты пишешь, что угол это дуга на радиус. Вот допустим, что дуга это то множество, что ты сказал. Как это множество делить на "радиус", и что такое вообще "радиус"?

Происходит троллинг тупостью, да?
Аноним 09/12/22 Птн 16:25:49 100177 136
Я думаю поворот это когда есть опорная точка и нужно сдвинуть другую точку относительно её и чтобы расстояние не поменялось. А угол это процент от поворота
Аноним 10/12/22 Суб 00:38:05 100182 137
Screenshot20221[...].png 715Кб, 1280x800
1280x800
>>98853
>суть синусов и косинусов
Неужели где-то синусы с косинусами описываются не как отношения сторон в прямоугольном треугольнике?
Аноним 10/12/22 Суб 12:51:40 100183 138
>>100182
Синусы и косинусы это и есть отношения сторон, но если не знающему объяснять, то он не поймёт. А в видео показывается, что синус это просто позиция по Y, а косинус это позиция по X. Вот и всё.
Аноним 10/12/22 Суб 13:06:09 100184 139
>>100174
>Ты пишешь, что угол это дуга на радиус.
Тебе написал про определение дуги.
>Вот допустим, что дуга это то множество, что ты сказал. Как это множество делить на "радиус", и что такое вообще "радиус"?
В определении дуги нет "радиуса".
>Нет, начала отсчета и радиус-векторов тоже нет, для этого нужно аффинное пространство.
Т. е. для нулевого значения координаты требуется аффинное пространство?
Совокупно твой ответ - это проявление тупости?
Аноним 10/12/22 Суб 15:37:43 100186 140
>>100184

>тебе написал про определение дуги
это я понял, но ранее ответил тебе, что это не определение дуги

>определении дуги нет "радиуса"
это я дальше развивал мысль, что кроме того, что "дуга" не определена, еще и слово "радиус" тоже не определно, то есть использовать указанное выше определение угла невозможно

>для нулевого значения координаты требуется аффинное пространство
не нулевого значения координат, а начала отсчета - да
Аноним 10/12/22 Суб 17:03:16 100187 141
>>100186
>это я понял, но ранее ответил тебе, что это не определение дуги
Ранее ты писал другому, а на текущий момент тебе предоставлено определение дуги без радиуса.
>не нулевого значения координат, а начала отсчета - да
А я про нулевое значение в векторном пространстве, без затрагивания аффинного. Таким образом, начало отсчёта представляется через нулевые значения. Или у тебя это невозможно?
>что кроме того, что "дуга" не определена, еще и слово "радиус" тоже не определно, то есть использовать указанное выше определение угла невозможно
Всё определяется опосредованно, но ты соскакиваешь с элементарных трактовок, судя по вашей переписки.
Аноним 10/12/22 Суб 19:03:17 100189 142
>>100187

>определение дуги без радиуса
твое определение дуги без радиуса это сфера, а не дуга и для него все еще нужно расстояние, которого нет в произвольном векторном пространстве

>начало отсчёта представляется через нулевые значения
что такое нулевые значения? в вп у тебя есть только один нуль вектор и всё

>определяется опосредованно
>соскакиваешь с элементарных трактовок
я задаю конкретные вопросы, а мне на них отвечают словами, значения которых не знают
Аноним 10/12/22 Суб 22:01:58 100194 143
>>100189
>твое определение дуги без радиуса это сфера
За меня уже определил трёхмерное пространство?
>что такое нулевые значения?
У кортежа есть значения? Они могут быть все нулевыми?
>я задаю конкретные вопросы, а мне на них отвечают словами, значения которых не знают
Тебе отвечают, но не так, как тебе хочется, только и всего. Ты уже пытался перевести обсуждение то в аффинное пространство, то приписывал обязательное нахождения понятия "радиуса" в определении "дуги", что, очевидно, не так.
Аноним 11/12/22 Вск 01:16:07 100199 144
>>100194

>трёхмерное пространство
не трехмерное пространство, а произвольное векторное пространство

>у кортежа есть значения
у какого кортежа? ты базис выбрал какой-то?

>но не так, как тебе хочется
мне отвечают ерунду, только и всего

>обязательное нахождения понятия "радиуса" в определении "дуги"
это не так, прочитай еще раз тред
Аноним 11/12/22 Вск 09:42:29 100201 145
>>100199
>не трехмерное пространство, а произвольное векторное пространство
А почему ты решил, что там можно определить сферу? На основании чего ты решил, что у меня не двухместный кортеж?
>у какого кортежа? ты базис выбрал какой-то?
А что, невозможно?
>мне отвечают ерунду, только и всего
Повсюду видишь грязь.
>это не так, прочитай еще раз тред
Зачем? Ведь все мои прошлые аргументы не отклонены.
Аноним 18/12/22 Вск 12:09:50 100313 146
>>90747 (OP)
>ожет, стоит добавить „минимальное“, будет „минимальное количество вращения“?
Не стоит. Угла всегда два, а не один. Это хорошо видно на самом правом пике у >>98676
Аноним 18/12/22 Вск 12:11:55 100314 147
>>97548
>всё во вселенной определяется через движение.
Электростатические поля тоже?
Аноним 19/12/22 Пнд 07:41:19 100325 148
>>100314
>Электростатические поля тоже?
Конечно, это же связность на расслоении.
Аноним 21/12/22 Срд 15:32:30 100355 149
IMG-a1bfc3858d5[...].jpg 253Кб, 975x457
975x457
Аноним 21/12/22 Срд 17:46:38 100356 150
>>100355
А разве снаряды не по эллипсу хуячат?
Аноним 27/01/23 Птн 18:32:21 100999 151
Аноним 28/01/23 Суб 08:02:46 101002 152
Аноним 06/03/23 Пнд 22:03:02 101636 153
Screenshot20220[...].png 430Кб, 797x659
797x659
↑↑↑↑
Аноним 17/03/23 Птн 13:58:23 101814 154
>>96411
ну так по факту пты пришел к площади через интеграл. сам не зная того, при расчете через интеграл мы тоже ж из бесконечно малых кусков собираем площадь...
>>96412
а какая нам разница есть наименьшая или нет, главное ее представить и убедится что она !=0
Аноним 17/03/23 Птн 14:09:14 101815 155
>>100356
только если больше первой космической разогнать, и то не долго... а так любое тело брошенное под углом к горизонту по параболедаже если больше первой космической, но там вырожденный случай, когда постоянно мимо земли падает по параболе
Аноним 26/04/23 Срд 14:26:52 102430 156
>>90747 (OP)
>это есть количество вращения
а вращение это что, как определяешь ?
Аноним 27/04/23 Чтв 19:39:06 102473 157
image.png 69Кб, 234x170
234x170
>>102430
Площадь под графиком.
Аноним 28/04/23 Птн 07:26:55 102481 158
>>102473
угла от времени? курица—яйцо проблема
а время воображаемо-конечное?
Аноним 24/09/23 Вск 21:51:26 108902 159
тред ещё жив?
Аноним 19/10/23 Чтв 22:53:38 109948 160
>>90747 (OP)
Угол это мера поворота. Ок?
Аноним 19/10/23 Чтв 23:03:50 109949 161
>>90747 (OP)
вращение - трансформация с одной неизменной точкой и без сжатия/растяжения.
Аноним 26/10/23 Чтв 14:59:15 110258 162
Логарифм комплексного числа с модулем 1.
Аноним 28/10/23 Суб 08:33:05 110274 163
>>110258
Многозначная функция.

>>109949
>трансформация
>неизменной
надмозг?
Есть преобразования с одной неподвижной точкой без сжатия\растяжения, не являющиеся поворотом.
Аноним 06/12/23 Срд 02:44:07 111302 164
>>90747 (OP)
Область определения косинуса (или любой другой тригонометрической функции).
Аноним 06/12/23 Срд 02:44:52 111303 165
>>111302
Точнее довольный элемент из этого множества (области определения)
Аноним 10/12/23 Вск 19:52:22 111368 166
>>111302
а
>Область определения
это что? откуда она берётся?
Аноним 19/12/23 Втр 20:51:18 111511 167
Tonearm DD-5250.jpg 180Кб, 1536x1022
1536x1022
>>90747 (OP)

угол — это
ψ = acos ( x / √(x² + y²) )

если y = √(1 – x²), то x² + y² = 1,
ψ = acos x,
cos ψ = x
Аноним 27/12/23 Срд 10:07:45 111629 168
>>111628
если уж уходить в комплексные числа, то надо вспомнить о том, что корень это многозначная функция
Аноним 28/12/23 Чтв 09:04:03 111657 169
>>90747 (OP)
Ну что потомки, построили уже башню Маркова? Конструктивная математика теперь проще пареной репы?
Аноним 17/01/24 Срд 14:41:08 112041 170
Шо, всё интересное в итоге закончилось тут?
Аноним 17/01/24 Срд 18:33:05 112043 171
>>112041
не может закончиться то, что не начиналось
Аноним 17/01/24 Срд 21:16:29 112044 172
>>112041
Так и не определили N угол. Угол-петух...
Аноним 18/01/24 Чтв 09:24:14 112048 173
>>112043
Ну как же не начаналось, когда в итоге ОП задушился от доказательств с определениями и ливнул куда-то
Аноним 18/01/24 Чтв 09:25:25 112049 174
>>112044
Всё ещё жду определение нуль мерного угла в рамках позитивно искривлённого пространства
Аноним 27/01/24 Суб 23:48:52 112171 175
Pythagdifferent[...].png 39Кб, 800x1174
800x1174
If x is increased by a small amount dx by extending the side AC slightly to D, then y also increases by dy. These form two sides of a triangle, CDE, which (with E chosen so CE is perpendicular to the hypotenuse) is a right triangle approximately similar to ABC. Therefore, the ratios of their sides must be the same, that is
$\frac{dy}{dx}={\frac{x}{y}}$.
This can be rewritten as
$y\,dy=x\,dx$.
This differential equation that can be solved by direct integration
$\displaystyle \int y\,dy=\int x\,dx\,$,
giving
$y^{2}=x^{2}+C$.
The constant can be deduced from $x = 0, y = a$
$C = a^{2}$.
Аноним 29/01/24 Пнд 00:05:54 112179 176
>>96395
Евклид так то линию называл длинной без ширины, у него тоже недостаточность абстрактного мышления?
Аноним 27/02/24 Втр 08:09:51 113227 177
А я так и не понял - угол в итоге существует?
Ответить в тред Ответить в тред

Check this out!

Настройки X
Ответить в тред X
15000
Добавить файл/ctrl-v
Стикеры X
Избранное / Топ тредов